Rating

IT Networking Fundamentals basic level(Computer Networking) rating

SUDOKU Game Code - PROLOG and C++

 


SUDOKU Game Code - PROLOG and C++

Sudoku is a logic-based, number-placement puzzle. In this game, the target is to fill a 9×9 grid with numbers from 1 to 9. 
Rules to fill it are:-
1. Every Row should be having exactly one occurrence of all 9 digits(1 to 9).
2. Every Column should be having exactly one occurrence of all 9 digits(1 to 9).
3. Every diagonal should be having exactly one occurrence of all 9 digits(1 to 9).
4. Each of the nine 3 × 3 subgrids that compose the grid (also called "boxes", "blocks", or "regions") contain all of the digits from 1 to 9.

The puzzle setter provides a partially completed grid, which for a well-posed puzzle has a single solution.
For example, 
Problem setter will give you this:-



Sudoku prob- targate cs


And Solution to this would be:- 


                                                      
Sudoku Solution- targate cs



Algorithm: 

  1. Create a function that checks if the given matrix is valid sudoku or not. Keep Hashmap for the row, column and boxes. If any number has a frequency greater than 1 in the hashMap return false else return true;
  2. Create a recursive function that takes a grid and the current row and column index.
  3. Check some base cases. If the index is at the end of the matrix, i.e. i=N-1 and j=N then check if the grid is safe or not, if safe print the grid and return true else return false. The other base case is when the value of column is N, i.e j = N, then move to next row, i.e. i++ and j = 0.
  4. if the current index is not assigned then fill the element from 1 to 9 and recur for all 9 cases with the index of next element, i.e. i, j+1. if the recursive call returns true then break the loop and return true.
  5. if the current index is assigned then call the recursive function with index of next element, i.e. i, j+1


Code in C++ :- 

#include <iostream>
 
using namespace std;
 
// N is the size of the 2D matrix   N*N
#define N 9
 
/* A utility function to print grid */
void print(int arr[N][N])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
            cout << arr[i][j] << " ";
        cout << endl;
    }
}
 
// Checks whether it will be
// legal to assign num to the
// given row, col
bool isSafe(int grid[N][N], int row,
                       int col, int num)
{
     
    // Check if we find the same num
    // in the similar row , we
    // return false
    for (int x = 0; x <= 8; x++)
        if (grid[row][x] == num)
            return false;
 
    // Check if we find the same num in
    // the similar column , we
    // return false
    for (int x = 0; x <= 8; x++)
        if (grid[x][col] == num)
            return false;
 
    // Check if we find the same num in
    // the particular 3*3 matrix,
    // we return false
    int startRow = row - row % 3,
            startCol = col - col % 3;
   
    for (int i = 0; i < 3; i++)
        for (int j = 0; j < 3; j++)
            if (grid[i + startRow][j +
                            startCol] == num)
                return false;
 
    return true;
}
 
/* Takes a partially filled-in grid and attempts
to assign values to all unassigned locations in
such a way to meet the requirements for
Sudoku solution (non-duplication across rows,
columns, and boxes) */
bool solveSudoku(int grid[N][N], int row, int col)
{
    // Check if we have reached the 8th
    // row and 9th column (0
    // indexed matrix) , we are
    // returning true to avoid
    // further backtracking
    if (row == N - 1 && col == N)
        return true;
 
    // Check if column value  becomes 9 ,
    // we move to next row and
    //  column start from 0
    if (col == N) {
        row++;
        col = 0;
    }
   
    // Check if the current position of
    // the grid already contains
    // value >0, we iterate for next column
    if (grid[row][col] > 0)
        return solveSudoku(grid, row, col + 1);
 
    for (int num = 1; num <= N; num++)
    {
         
        // Check if it is safe to place
        // the num (1-9)  in the
        // given row ,col  ->we
        // move to next column
        if (isSafe(grid, row, col, num))
        {
             
           /* Assigning the num in
              the current (row,col)
              position of the grid
              and assuming our assigned
              num in the position
              is correct     */
            grid[row][col] = num;
           
            //  Checking for next possibility with next
            //  column
            if (solveSudoku(grid, row, col + 1))
                return true;
        }
       
        // Removing the assigned num ,
        // since our assumption
        // was wrong , and we go for
        // next assumption with
        // diff num value
        grid[row][col] = 0;
    }
    return false;
}
 
// Driver Code
int main()
{
    // 0 means unassigned cells
    int grid[N][N] = { { 3, 0, 6, 5, 0, 8, 4, 0, 0 },
                       { 5, 2, 0, 0, 0, 0, 0, 0, 0 },
                       { 0, 8, 7, 0, 0, 0, 0, 3, 1 },
                       { 0, 0, 3, 0, 1, 0, 0, 8, 0 },
                       { 9, 0, 0, 8, 6, 3, 0, 0, 5 },
                       { 0, 5, 0, 0, 9, 0, 6, 0, 0 },
                       { 1, 3, 0, 0, 0, 0, 2, 5, 0 },
                       { 0, 0, 0, 0, 0, 0, 0, 7, 4 },
                       { 0, 0, 5, 2, 0, 6, 3, 0, 0 } };
 
    if (solveSudoku(grid, 0, 0))
        print(grid);
    else
        cout << "no solution  exists " << endl;
 
    return 0;
    // This is code is contributed by Pradeep Mondal P
}

    Code in PROLOG:-
% render solutions nicely.
:- use_rendering(sudoku).

:- use_module(library(clpfd)).

% Example by Markus Triska, taken from the SWI-Prolog manual.

sudoku(Rows) :-
        length(Rows, 9), maplist(same_length(Rows), Rows),
        append(Rows, Vs), Vs ins 1..9,
        maplist(all_distinct, Rows),
        transpose(Rows, Columns),
        maplist(all_distinct, Columns),
        Rows = [A,B,C,D,E,F,G,H,I],
        blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).

blocks([], [], []).
blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-
        all_distinct([A,B,C,D,E,F,G,H,I]),
        blocks(Bs1, Bs2, Bs3).

problem(1, [[_,_,_, _,_,_, _,_,_],
            [_,_,_, _,_,3, _,8,5],
            [_,_,1, _,2,_, _,_,_],

            [_,_,_, 5,_,7, _,_,_],
            [_,_,4, _,_,_, 1,_,_],
            [_,9,_, _,_,_, _,_,_],

            [5,_,_, _,_,_, _,7,3],
            [_,_,2, _,1,_, _,_,_],
            [_,_,_, _,4,_, _,_,9]]).


/** <examples>

?- problem(1, Rows), sudoku(Rows).
*/


Previous
Next Post »